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‡ Laboratoire de Chimie Ḿetallurgique et Spectroscopie des Terres Rares, UPR 209 CNRS 1,
Place A Briand, F-92195 Meudon, France
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Abstract. Magnetic susceptibilities of polycrystalline samples of two series of double rare-earth
molybdate and tungstate compounds, Na5RE(XO4)4 (RE = rare earth, X = Mo or W), with
scheelite-type structure, space groupI41/a (No 88), where RE atoms adopt S4 point symmetry,
have been measured in the temperature range 1.7–400 K. Using the wavefunctions and energy
levels derived from standard free-ion and crystal-field parameters deduced from the analysis of
the optical spectra of some selected (Pr, Nd and Eu) compounds, a systematic calculation of
the temperature-dependent paramagnetic susceptibility, for all 4fN rare-earth configurations on
the two series, has been carried out according to the Van Vleck formula. Very good agreements
with experimental data are found over the whole temperature range. The standard crystal-field
treatment of 4fN ions is shown to explain the magnetic properties of these compounds, for
which no kind of magnetic interaction among the rare-earth ions has been detected.

1. Introduction

The conventional, phenomenological description of the crystal field is a well-proven tool for
the interpretation of spectroscopic, magnetic and other physical properties of solids. In this
way, the use of complete free-atom and crystal-field Hamiltonians of the 4fN configurations
yields wavefunctions from which the paramagnetic susceptibility for any crystallographic
direction and its temperature dependence as well as theg-values can be computed when the
sameL + geS tensorial operator is applied to the wavefunction of a level.

In previous works [1–3] two of the authors reported a detailed spectroscopic study
on the molybdate series for the 4f2, 4f 3 and 4f6 configurations of Pr3+, Nd3+ and Eu3+,
respectively. From experimental data consisting of absorption and emission measurements
between liquid-helium and room temperatures, nearly complete energy level schemes were
derived, showing very good correlations between the experimental and simulated energy
levels, for the approximated D2d and then for the true S4 symmetries of the rare-earth
position. In fact, for the present S4 point symmetry, the crystal-field potential involves a
quite reduced number of crystal-field parameters (cfps): only five real and two imaginary
cfps. Complete sets of those cfps as well as free-ion parameters have been reported for
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the above-mentioned compounds, and they were found to vary smoothly with the atomic
number of the rare earth.

In the present work we show the results of the methodical comparison of the observed
magnetic susceptibility with calculated curves derived from wavefunctions generated
through phenomenological and/or calculated cfps, for both molybdate and tungstate
Na5RE(XO4)4 series. That comparison constitutes an excellent opportunity to test the ability
of the crystal-field model to give ‘correct’ wavefunctions for an ion under consideration.

2. Experimental details

Polycrystalline Na5RE(XO4)4 samples were prepared by solid-state reactions using
stoichiometric amounts of 99.9% pure rare-earth sesquioxides, Na2CO3 and MoO3 or WO3

as starting materials, with final heat treatments at 530 and 600◦C for X = Mo and W,
respectively. Sample purity and crystal structure were tested by x-ray diffraction analysis.

Optical measurements of some pure(R = Pr, Nd) or doped (5%-Eu-activated
Na5Gd(XO4)4) compounds have been previously reported [1, 2]. A SQUID (Quantum
Design) magnetometer operating from 400 to 1.7 K at 5000 Oe was used to perform the
dc magnetic measurements. The diamagnetic corrections introduced were calculated using
the standard [4] values (in−1× 10−6 emu mol−1) of 5 for Na+; 17 for Lu3+; 18 for Er3+,
Tm3+ and Yb3+; 19 for Dy3+ and Ho3+; 20 for Eu3+, Gd3+, Nd3+, Pr3+ and Sm3+; and
estimated values of 55 and 60 for the XO2−

4 groups, molybdate and tungstate, respectively.

3. Crystal-field analysis and simulation of the energy level schemes

In the development of a complete Hamiltonian for 4fN configurations, the central-field
approximation allows one to consider separately the Hamiltonians corresponding to the
gaseous free-ion and to the crystal-field interactions which arise when the ion is in a
condensed phase. Then the Hamiltonian consists of two parts:

H = HFI + HCF.

The interactions primarily responsible for the free-ion structure can be written as

HFI = H0 +
∑

k=0,1,2,3

Eke
k + ζ4fASO + αL(L + 1) + βG(G2)

+ γG(R 7) +
∑

k=2,3,4,6,7,8

T ktk

whereH0 is the spherically symmetric one-electron term of the Hamiltonian;Ek andζ4f are
the Racah parameters and the spin–orbit coupling constant, andek and ASO represent the
angular parts of the electrostatic repulsion and spin–orbit coupling, respectively. For the
configurations of two or more equivalent electrons the two-body interactions are considered
with Tree’s parametersα, β andγ associated with Casimir operatorsG(G2) andG(R7). For
configurations having more than two electrons, non-negligible three-body interactions can
also be introduced (T γ -parameters). We do not consider here the spin–spin, spin–other-orbit
and other relativistic interactions of minor importance which could be simulated through
the P k-integrals(k = 2, 4, 6) and MarvinMk-integrals(k = 0, 2, 4).

The crystal-field calculations are usually carried out within the single-particle crystal-
field theory. Following Wybourne’s formalism [5], the crystal-field Hamiltonian is expressed
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(a)

(b)

Figure 1. Experimental versus (a) extrapolated cfps (top) and (b) cfps calculated using the SOM
(bottom) for the Na5RE(MoO4)4 series.
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as a sum of products of spherical harmonics and crystal-field parameters:

HCF =
4,6∑
k=2

k∑
q=0

[
Bk

q (C
k
q + (−1)qCk

−q) + iSk
q(C

k
q − (−1)qCk

−q)
]
.

The number of the non-zeroBk
q and Sk

q phenomenological cfps depends on the
crystallographic point-site symmetry of the lanthanide ion. When the S4 symmetry is
considered for RE in Na5RE(XO4)4 the crystal-field potential involves five realBk

q - and two
imaginarySk

q -parameters, immediately reduced to six parameters by an appropriate choice
of the reference axis system, which cancelsS4

4. When the symmetry is approximated to D2d,
all of theSk

q vanish. The fitting procedure between experimental and calculated energy level
values was conducted by minimizing the root mean square (r.m.s.) deviation, chosen as the
factor of merit. Schemes of 35, 76 and 21 energy levels were considered in simulations
for Pr, Nd and Eu molybdate materials, respectively. Very good correlations were obtained
between experimental transition energies and the computed level structures [2].

4. A priori calculation of crystal-field parameters: the simple overlap model (SOM)

Among all of the reporteda priori calculation models of the cfps [6–11], recently revised
and examined by one of the authors [12, 13], that known as the simple overlap model,
SOM [11], has been chosen to be applied in this case. Only the first coordination sphere
around the rare-earth cation is retained, i.e., the required crystallographic position data are
restricted to the closest ligand positions. The covalence is represented by the overlapρ

between the rare-earth and the ligand orbitals. The cfps are written as

Bk
q = ρ

(
2

1 ± ρ

)k+1

〈rk〉Ak
q

with

ρ = ρ0

(
R0

R

)n

.

In the expression forBk
q the radial integral〈rk〉 is not corrected from the spatial expansion

because only the first neighbours are considered. The lattice sumsAk
q are calculated with

an effective charge for the ligand. The± sign in the denominator is present to differentiate
the type of ligand, the− sign being for the most covalent. The overlapρ varies for each
ligand as a function of the distance from the central ion and is referred to the closest ligand.
Thus, this model involves only three adjustable parameters: the overlap, the effective charge
and n, the exponent of the overlap variation with the distance. In order to normalize the
curves calculated using the SOM to the experimental ones (first for Na5Eu(MoO4)4, then
for Pr and Nd compounds), a comparison of calculated and observed strength parameters
was made for the three cases. The strength parameter is defined [14] in terms of the cfps
as follows:

S =
{

(1/3)
∑

k

[1/(2k + 1)]

[
(Bk

0)2 + 2
∑
kq

[(Bk
q )

2 + (Sk
q )

2]

]}1/2

which is a quantitative measure of the strength of the crystal-field interaction of a particular
rare-earth ion in a particular host. In these comparisonsn was fixed at 3.5, a value of
−0.8 was taken as the effective charge for oxygen—a value which is found not to vary
much [15]—and the overlapρ, ranging for 4fN configurations from 0.04 (mostly ionic
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Figure 2. The temperature variation of the experimental (symbols) and calculated (solid lines)
χ−1 (or χ for the Eu3+ compound) for Na5RE(MoO4)4 materials. The cfps are those from
figure 1(a).

compounds) to 0.08 (mostly covalent compounds), was finally adjusted to an intermediate
value, 0.05, which was utilized for all compounds, for the molybdate as well as the tungstate
series. Crystallographic data were taken from [16, 17].

5. Magnetic susceptibility and crystal-field levels

The calculation of the magnetic susceptibility of these rare-earth compounds has been carried
out from the consistent sets of wavefunctions and energy levels previously determined by
diagonalizing the above-mentioned crystal-field Hamiltonian. This is done here using the
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Figure 2. (Continued)

Van Vleck formula [18, 19]:

χ = Nβ2
∑

i

[
(ε

(1)
i )2

kT
− 2ε

(2)
i

]
exp−

(
E

(0)
i

kT

)/∑
i

exp−
(

E
(0)
i

kT

)
with

ε
(1)
i = 〈9(0)

i |(L + geS) · u|9(0)
i 〉

and

ε
(2)
i =

j∑
E

(0)
i 6=E

(0)
j

[
〈9(0)

i |(L + geS) · u|9(0)
j 〉

]2

E
(0)
i − E

(0)
j
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Figure 2. (Continued)

in which N is Avogadro’s number,β the Bohr magneton,k the Boltzmann constant,E
and 9 the non-perturbed eigenvalues and wavefunctions, respectively, described on the
|SLJMJ 〉 basis, and the magnetic dipole operatorL + geS, is represented by a tensor of
rank 1. The diamagnetic second-order Zeeman term has been neglected in this expression
for the paramagnetic susceptibility. The sum runs over all other states(b 6= a). The different
values of the tensor components (or combinations of them) destroy the isotropy observed
for the free ion or even for an ion in a cubic symmetry. The anisotropic components are
denoted asχ⊥ (the ±1 component of the tensor) andχ‖ (the 0 component of the tensor).
For polycrystalline samples, the average paramagnetic susceptibility isχav = (2χ⊥ +χ‖)/3.
The sum runs over all thermally populated levels, according to the Boltzmann population.
In the expression, the matrix elements are calculated using the Racah algebra rules.

Other than for Eu3+ compounds, and to lesser extent for Sm3+ compounds, the diagonal
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Figure 2. (Continued)

part involving ε
(1)

1 , i.e., the temperature-dependent term of the susceptibility, is the most
important contribution to the paramagnetic susceptibility. In fact, it corresponds to the
quantum expression for the Curie–Weiss law. The off-diagonal, temperature-independent
terms in the formula, a result of the second-order perturbation, usually have little importance,
with the exception of those for the above-mentioned compounds (the ground stateJ = 0
of Eu3+ is only some few hundreds of cm−1 lower than the next stateJ = 1, so the
second-order terms in the formula are unusually important). Since7F0 is a non-magnetic
level, the diagonal part is cancelled at low temperatures when the next higher state7F1

is not populated, with only the second-order element in the above expression,ε
(2)
7F0

, not
negligible. Then the non-diagonal interaction is solely responsible for the well-known
paramagnetic temperature-independent susceptibility plateau. This underlines the sensitivity
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Figure 2. (Continued)

of the paramagnetic susceptibility to the value of this element—which, on the other hand,
is strongly dependent on the crystal-field strength.

For 4fN configurations, the calculation of the paramagnetic susceptibility agrees
fairly closely with experiment [20–23]. The substantial degree of degeneracy of the
4f 6 configuration makes the simulation more difficult for the Eu3+ compounds. The
complete crystal-field calculation would require for a low symmetry to diagonalize a 3003-
dimensioned secular determinant, although for the D2d (or S4) symmetry this would be
reduced to four submatrices, about 750× 750.

6. Magnetic susceptibility calculations for the Na5RE(XO4)4 series

In order to simplify the magnetic susceptibility calculation we assume a D2d point symmetry
for the rare earth. Moreover, considering that the cfps do not differ significantly between the
europium double molybdate and tungstate [1] we reasonably used for both families a unique
set of cfps, those from the molybdate series. Two different collections of phenomenological
parameters were used in our calculations: (a) cfps obtained from previous simulations on
experimental energy level schemes of Pr, Nd and Eu compounds, and for the remaining
configurations those deduced from an extrapolation of the systematic trends identified in the
evolution of each parameter (figure 1(a)); and (b) cfps calculated by the simple overlap
model, SOM (figure 1(b)). In both cases the free-ion parameters are assumed to be
those reported by Carnallet al [24], with the exception of those for 4f2, 4f 3 and 4f6

configurations, where our experimental free-ion parameters were used [2]. Calculations of
the energy levels and magnetic properties of the 4fN configurations were performed using
the Fortran computer programs REEL and IMAGE [25].
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7. Discussion

Figures 1(a) and 1(b) show the variation of the cfps through the rare-earth series versus
the atomic number compared to (a) extrapolated values from experimental data, and to (b)
those calculated using the SOM. A major difference is found only forB4

0, whereas other
cfps have comparable orders of magnitude.

Figure 2 presents a comparison between the experimental and calculated magnetic
susceptibilities (using the cfps from figure 1(a)) for most of the compounds of the molybdate
series. There is almost no difference between molybdate and tungstate compounds for
the experimental values, which has to be correlated with the closeness of the optical
spectra and justify calculations with the same set of parameters. At high temperatures, the
susceptibilities follow a Curie–Weiss-type behaviour. Deviations from linearity observed
at low temperature can be attributed to the splitting of the free-ion ground state under
the influence of the crystal field, and the Weiss constants for these materials are entirely
due to crystal-field effects since they do not undergo any magnetic exchange interactions.
The simulation is very good for the whole series except the case of the praseodymium
compounds, which has often been found to be the case for different matrices and is discussed
elsewhere [23, 26].

Figure 3. A comparison between experimental (symbol) and calculated (solid lines) reciprocal
paramagnetic susceptibility curves for Na5Yb(MoO4)4: (a) from extrapolated cfps, figure 1(a);
and (b) from cpfs calculated using the SOM, figure 1(b).

This type of simulation offers an excellent opportunity to test the effect of the cfps on
paramagnetic susceptibility curves. Except in the case of Eu3+ [1] and to a lesser extent
the case of Sm3+, for which the non-diagonal termε(2)

i has great importance, the curve
deviating most strongly from the Curie–Weiss law is found to be that for Yb3+. This is
mainly due to the thermal population effect, but also to the particular values of individual
matrix elements affected by the cfps values. This ion, located at the end of the rare-earth
series, also presents the largest difference between calculated and estimated parameters. This
is why the reciprocal susceptibility curves calculated by using both sets of cfps reported
on figures 1(a) and 1(b) for Na5Yb(MoO4)4 are compared to the experimental results in
figure 3. It is clearly shown that the discrepancy is not very important in spite of the large
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difference between the twoB4
0-parameters. In fact, for molybdates or tungstates with the

remaining, lighter than Yb3+, rare-earth ions, the observed differences between the two
calculated susceptibility curves are negligible.

The crystal-field strength appears to be not very sensitive in the paramagnetic
susceptibility curves. A good simulation can be considered as a confirmation for obtaining
‘good wavefunctions’ only through using ‘good cfps’ such as those that we obtained
experimentally for Pr3+, Nd3+ and Eu3+, and to a lesser extent, for the other rare-earth
ions with extrapolated values. In contrast, it seems to be more difficult to deduce one cfp
set from a given susceptibility curve, i.e., susceptibility measurements on polycrystalline
powders do not determine the cfps at all accurately, even when the point symmetry is
relatively high, except for in special cases for which only some of the cfps are predominant
(e.g. the case of the Eu3+ plateau position). That means that in the possible case of opaque
compounds the approach of the crystal-field strength would require more than the knowledge
of the paramagnetic susceptibility. We think that this problem could be solved only if that
information is connected with the position of the first crystal-field levels deduced from
inelastic neutron scattering or specific heat measurements, and completed with a model for
calculating the cfps from the crystallographic positions.
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